2000% superplasticity in a nanostructured high-entropy alloy processed by high-pressure torsion

Hyoung Seop Kima,b, Nhung Thi-Cam Nguyena, Peyman Asghari-Rada

aDepartment of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea

bGraduate Institute of Ferrous Technology, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea

ahskim@postech.ac.kr

High Strain-Rate Superplasticity (HSRS) is extremely rare in high strength materials, and the lack of superplastic forming capability in a recently emerged class of high-strength materials, the so-called High-Entropy Alloys (HEAs), is a serious obstacle for its potential use in engineering complex structures. HEAs have a unique alloy design concept based on multi-principle elements, and they exhibit remarkable properties such as high strength combined with high ductility as well as high fracture toughness when compared to conventional alloys \cite{1}. Thus, achieving HSRS in HEAs would signify a huge breakthrough in advanced material science. In this presentation, we present a superplastic elongation to 2,000% of the original length at a high strain rate of 5x10-2 s-1 in an Al\textsubscript{9}(CoCrFeMnNi)\textsubscript{91} (at\%) high-entropy alloy nanostructured using high-pressure torsion. The high-pressure torsion-induced grain refinement in the multi-phase alloy combined with limited grain growth during hot plastic deformation enables high strain rate superplasticity through grain boundary sliding accommodated by dislocation activity \cite{2,3}.

\textit{Keywords: High-entropy alloy, Superplasticity, Nanostructure, High-pressure torsion}

References:

\cite{1} P Sathiyamoorthi, HS Kim, High-entropy alloys with heterogeneous microstructure: processing and mechanical properties, Prog. Mater. Sci. 123, 2022, 100709

\cite{2} NTC Nguyen et al., Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy, Nature communications, 11 (2020) 1