Precipitation role in strengthening and improved conductivity of HPTE-processed Al-Mg-Si alloy

Vahid Tavakkoli1,2, Andrey Mazilkin1,3, Julia Ivanisenko1, Christian Kübel1,2,4, Torben Boll1,4

1Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

2Department of Materials and Earth Sciences, Technical University of Darmstadt (TUD), 64287, Darmstadt, Germany

3Institute of Solid State Physics Russian Academy of Sciences Chernogolovka, Moscow District, 2 Academian Ossipyan str., 142432 Russia

4Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

1Vahid.tavakkoli@kit.edu

Aluminum alloys are attracting noticeable attention in electrical application due to their high conductivity, corrosion resistance and low price. However, low strength decreases their lifetime and subsequently results in significant expenses. Combination of SPD and post ageing is proposed as a potential approach to optimize electrical and mechanical properties [1]. High pressure torsion extrusion (HPTE) [2] is a relatively novel SPD method which can open up new possibilities for further scale-up the products size, as shown in this study. Samples processed via this method followed by post aging revealed high strength with markedly improved conductivity. Size, shape and density of precipitates are analyzed by means of HRTEM, STEM and APT.

Keywords: precipitation, HPTE, electrical conductivity, mechanical strength

Acknowledgment: the authors would like to acknowledge DAAD for the financial support of this project.

References:
