Ultralow temperature superplasticity in ultrafine-grained Al alloys

Anwar Q. Ahmeda,b, János Lendvaia, Ruslan Z. Valievc,d, Nguyen Q. Chinha,*

aDepartment of Materials Physics, Eötvös Loránd University, Budapest, Hungary
bCollege of Science, University of Kufa, Najaf, Iraq
cInstitute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa, Russia
dLaboratory for Mechanics of Bulk Nanomaterials, Saint Petersburg State University, St. Petersburg, Russia

*Corresponding author: chinh@metal.elte.hu

Abstract: Superplasticity of materials is an important field of both basic- and applied scientific researches because it presents significant challenges in the areas of flow mechanisms and it forms the underlying basis for the commercial superplastic forming industry, as well [1]. Taking into account also the economic considerations, achieving superplastic forming at the lowest possible temperature remains a priority. Here we show some recent results [2] on superplasticity of ultrafine-grained commercial Al alloys at ultralow homologous temperature below 0.5 (i.e., below 200 °C), and its novel deformation mechanism. During the superplastic deformation, grain boundary sliding, as the main flow mechanism, is enhanced by the increased diffusion in grain boundaries, when ultrafine-grained materials have grain boundary segregation of specific alloying elements.

Figure 1: Significance of the new results indicated by reviewing the temperature dependence of superplasticity of commercial Al alloys.

Keywords: ultralow-temperature superplasticity, Al alloys, ultrafine-grained materials, alloying segregation, high-pressure torsion.

References: