Additivity of Strengthening Mechanisms in Severe Plastically Deformed Metals and Alloys

Soumita Mondala, Shavi Agrawala, Surendra Kumar Makinenia, Pradipta Ghoshb, Satyam Suwasa

aIndian Institute of Science, Bangalore, 560012, India
bIndian Institute of Technology, Gandhinagar, 382355 India

asatyamsuwas@iisc.ac.in

Pure Nb, Nb-1Zr and Nb-1Zr-0.1C (wt.\%) were subjected to high-pressure torsion deformation for producing bulk nanocrystalline microstructure. Microstructural features obtained from SEM-EBSD showed negligible variation with alloying additions, unlike the dislocation density and its arrangements obtained by X-ray line profile analysis by Convolutional Multiple Whole Profile fitting. Flow stresses evaluated by Tabor’s relation from the Vicker’s microhardness testing showed a remarkable increment from 732±18 MPa in pure Nb to 925±44 MPa in NZC at strain 70. Since microstructural features exhibited similarities, the deformed microstructural constituents were probed using the Atom Probe Tomography. The results obtained enabled the deconvolution of the strengthening contributions from Peierls stress, Hall-Petch hardening, Taylor hardening, solid solution strengthening and precipitation strengthening. Fitting of the theoretically calculated strengthening contributions to the experimental data enabled the deduction of a non-linear additivity rule that attributed the predominant strengthening contribution to come from the high density of severe plastically induced dislocations. Results were also correlated with previous works on Al-Mg and Cp-Ti.

Keywords: Niobium alloys, Severe Plastic Deformation, APT, CMWP, Strengthening mixture

Fig.1: Experimentally measured Y.S. vs theoretically calculated Y.S. by linear / non-linear additive rules for (a) Nb alloys, (b) Al-Mg alloys, and (c) cp-Ti.

References: