Superposition of strengthening mechanisms in hot forged Al_xCoCrFeNi high entropy alloys

Ayush Sourav^a, Shanmugasundaram Thangaraju^a

^aDepartment of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, India- 411025

^aayushsourav203@gmail.com and thangaraju@diat.ac.in

Al_xCoCrFeNi is one of the most extensively studied high entropy alloy system, as it shows a dynamic change of properties with the variation of Al. In this work, Al_xCoCrFeNi (x=0.3, 0.5, 0.7) alloys were hot-forged at 1250°C. Various characterization techniques such as optical microscopy, x-ray diffraction (XRD), electron backscatter diffraction (EBSD), energy dispersive x-ray spectroscopy (EDS), and hardness tests were carried out to evaluate structure-property relationship. The Al_{0.3} alloy possesses a single-phase face-centered cubic (FCC) structure, whereas Al_{0.5} and Al_{0.7} have dual-phase FCC and body-centered cubic (BCC) structure. An increase in the FCC phase fraction was observed in all the alloy compositions after forging. Forging of alloys increased the hardness of Al_{0.3} and Al_{0.5}. In contrast, a reduction in hardness was observed in Al_{0.7} alloy. Microstructure analysis revealed that phase fraction, twins, low angle grain boundaries, and grain refinement are major factors for structure-property relation. Contributions from different strengthening mechanisms were estimated, and a modified rule of mixture is proposed to evaluate the strength of these alloys from the microstructural features.

Keywords: High Entropy alloy; structure-property relation; hot deformation; microstructure; multiphase alloy

Fig.1 EBSD phase mapping of Al_xCoCrFeNi in cast and forged conditions.