Simulation of in situ X-Ray Diffraction peaks of single crystal Superalloys

Alain Jacques^{a,c†}, Komlavi Eloh^{a,b,c}, Stéphane Berbenni^{b,c}, Ablam Massa^{a,b,c}, <u>Thomas</u> <u>Schenk^{a,b,c}</u>

^aInstitut Jean Lamour, 2 rue André Guinier, 54011 Nancy Cedex, France
 ^b Université de Lorraine, CNRS, Arts et Métiers ParisTech, LEM3, F-57000 Metz, France
 ^cLaboratory of Excellence on Design of Alloy Metals for low-mAss Structures (LabEx DAMAS), University of Lorraine, Metz, France
 thomas.schenk@univ-lorraine.fr

Single crystal superalloys are two phased alloys, where hard cuboidal y' precipitates (L1₂ structure) are embedded within a softer fcc y matrix. During high temperature creep, the precipitates evolve into platelets (rafts). Both phases bear a complex stress state, resulting from the temperature dependent lattice mismatch $\delta(T) =$ $2(a_{\gamma\gamma} - a_{\gamma})/(a_{\gamma\gamma} + a_{\gamma})$, the distribution of alloy elements between dendritic and interdendritic zones, and the different plastic strain states of both phases. Using the symmetry around the [001] tensile axis and following the evolution of the (200) diffraction peaks during creep by *in situ* far field diffractometry [1] (ESRF, DESY) it is possible to compute the stress and plastic strain state of each phase. However, the (200) diffraction peak also contains information: the actual shape of cuboids and mobile dislocations densities, which can be retrieved only by modelling the microstructure, and compare the experimental diffraction peak to a simulated one [2]. A major hurdle is to build an efficient method to compute the mechanical fields (stress, strain, and displacement) within a $(2\mu m)^3$ 3D representative element of the microstructure containing dislocations divided in 512³ voxels. We use a method based on the Fast Fourier Transform (FFT) well adapted to materials with heterogeneous elastic constants [3]. The scattered amplitude in the vicinity of a reciprocal lattice vector **G** can then be computed as the FFT of $exp[2i\pi G. u(r)]$ with the displacement field u(r)at point r. Intensities generated at different points can be summed to get whole diffraction peaks. Further correction [3] is needed to remove oscillations of the displacement field in the vicinity of dislocation. The effect of various microstructural features is discussed and compared to experimental results.

Keywords: SX superalloys; FFT method; load transfer; dislocations.

References:

[1] R. Tréhorel *et al.* Real-time study of transients during high-temperature creep of an Ni-base superalloy by far-field high-energy synchrotron X-ray diffraction. JAC, 51(5) 2018, 1274-1282.
[2] A. Jacques, From Modeling of Plasticity in Single-Crystal Superalloys to High Resolution X-rays Three-Crystal Diffractometer Peaks Simulation. Metallurgical and Materials Transactions A, 47(12), 2016, 12, 5783-5797

[3] K. S. Eloh *et al.* The Effect of Crystal Defects on 3D High-Resolution Diffraction Peaks: A FFT-Based Method, Materials Vol. 11(9), 2018, 1669