Failure behavior of nano structured Maraging steels Kevin Jacob^a, Saurabh Dixit^b, Anton Hohenwarter^c, B. Nagamani Jaya^a

→0.4% Ti

Fe

Ni Ni

^a Indian Institute of Technology Bombay, Mumbai - 400076, India ^b Mishra Dhatu Nigam Ltd. (MIDHANI), Hyderabad - 500058, India 🗲 🏧 ^c Montanuniversität Leoben, Leoben - 8700, Austria kevinjacobs1712@gmail.com

Peak strength after

aging \rightarrow 1.7 GPa

AR MDN 250 steel

Hierarchical microstructure

HPT processed MDN steel

Peak strength after deformation and aging \rightarrow 2.9 GPa

Breakdown of grain structure $G.S \sim 190 \pm 40 \text{ nm}$

Fracture toughness values for different	condition	at crack initiation (δ) (mm)	fracture toughness $(K_{1})(MPa\sqrt{m})$	zone size $(r_p) (mm)$	thickness for plane strain (B_) (mm)
ocessing conditions	AR	0.039±0.002	89.6±1.8	1.4	22
ocessing conditions	AR+PA	0.021±0.003	81.7 ± 2.6	0.4	6
	AR+OA	0.011±0.002	64.9±2.1	0.4	7
	HPT	0.012 ± 0.004	61.3 ± 3.5	0.1	2
	HPT+PA	0.004±0.001	44.7±4.2	0.04	1
	HPT+OA	0.006±0.001	54.7 ± 3.8	0.07	1

Crack branching phenomenon

Transformation Induced Plasticity (TRIP) in overaged condition

— Prior austenite grain — Block boundary boundary Packet boundary — Lath boundary Reverted austenite Martensite converted from <u>Plastic zone ahead of</u> crack tip

Conclusion

- Planar slip in AR was detrimental for tensile stress-strain behaviour and yet enhanced fracture toughness through crack branching
- Absence of planar slip and occurrence of TRIP effects due to reverted austenite enhanced the overall ductility and fracture toughness of AR+OA at the cost of strength
- Nano scaled reverted austenite formed through HPT processing showed significant TRIP effect leading to enhanced crack tip toughening and improved fracture toughness

Acknowledgements

- Max Planck Society and IRCC seed grant for funding provided to carry out this work
- Central facilities at IIT Bombay