
Steel ID C Mn Si Al Cr

M 0.15 5.8 0.7 1.8 0.04

The alloy design was based on previous work showing that 0.2C-6Mn-

(1-1.5)Si-(0.5-2)Al-(0-0.5)Cr (wt%) steels could achieve the 3G AHSS 

mechanical property targets and be successfully galvanized. The fabrication 

of thus Medium-Mn steel is detailed by (Pallisco and McDermid, 2020). 

Prototype Medium-Mn steel (Steel M) with a 80%M-20%F (MF) starting 

microstructure was first obtained by annealing at 890°C for 10 min

Material Introduction
Considerable research has been invested in developing processing techniques 

to create Advanced High Strength Steels (AHSSs), and to stabilize critical 

phases at ambient temperatures; however, little has been done to determine 

the extent to which the stress-driven transformation from metastable retained 

austenite (RA) to martensite (M), Transformation Induced Plasticity (TRIP), 

can suppress or delay damage. 

This work aims to determine the mechanisms that control the damage and 

fracture response of Medium-Mn steels and to thereby suggest approaches that 

will optimize TRIP kinetics, damage suppression and achieve 3G mechanical 

targets. 
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Figure 1 (a) Banana Diagram (b) Hance’s diagram 

with a series of plotted Medium-Mn steels

Table 1 Chemistry of Steel M in wt%

This narrow 

temperature range 

was chosen based on 

pervious works done 

on a similar steel 

which showed 

dramatic variability in 

TRIP kinetics3. 

Standardized tensile testing and interrupted tensile tests coupled with XRD 

using sub-size ASTM E84  samples were used to determine the tensile 

properties and  TRIP kinetics of Steel M with a MF starting microstructure 

from IATs 665/685/710⁰C for 120s

Figure 3 Thermal Profile for experimental IA treatments 
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Pictorial representation of research methodology to determine the 

relationship between TRIP and damage using strain as the intermediate 

parameter. 

Figure 5 (a) Engineering Tensile Curves 

(b) TRIP as a function of True Strain

Overall: Determine the intercritical annealing (IA) parameters that 

mitigates damage, and improves ductility through the use of an 

optimal TRIP rate in a prototype Medium-Mn steel 

➢Determine the micro-mechanisms & 

quantify the amount of damage that 

contributes to overall fracture with

➢Determine the relationship between 

TRIP kinetics and damage 

➢ Investigate the role of triaxiality on the 

TRIP-damage relationship 

M-MF-685 ⁰C-120s

Objectives 

modest adjustments in IA temperatures

Figure 2 Research Methodology Schematic

X-ray microtomography 

Detector

X-ray
source

µXCT tensile jig

A Bruker Skyscan1172 desktop X-ray microtomography (µXCT) 

scanner equipped with a 100kV x-ray source and an Al/Cu filter at the 

highest resolution possible (0.7μm/pxl) was used in this study. 

2D 
Projections

3D Model

(a)

(b) (c)

Figure 4 (a) Set Up of µXCT (b) 2D Projections collected during scanning 

(c) 3D modelling of Voids within the specimen  

Voids

5 μm 17.4 % Retained Austenite (γ)

Electropolish + EBSD

on micro tensile specimen 
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µDIC Strain Map

An in-lens detector in a field emission 

gun (JSM-7000-FEG) SEM was used 

to obtain high resolution images at 

high magnifications.  The use of a 

manual in-house built tensile stage 

allows the working distance to be 

decreased. Strains were computed 

using ARAMIS©

In-situ SEM Tensile Testing Coupled with µDIC 

Track EBSD 

Region using FIB

2

1 μm

Perform In-situ 

tensile testing…

….acquire a SE Images at the 

EBSD scanned location as a 

function of strain

Hourglass-shaped tensile specimens were electropolished at 20V in a -20ºC 

liquid-nitrogen-cooled 10% perchloric solution in methanol. 

Electropolishing of this multiphase Medium-Mn steel resulted in excellent 

EBSD indexing and sufficient grey scale variation for Digital Image 

Correlation (DIC) post-processing. This enabled the micro-strain tracking

of phases, particularly RA, on the material’s surface as a function of 

increasing local average strain. 
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Figure 6 Closed Void Area fraction of (a) hourglass samples from IATs of 665–710 ⁰C 

(b) Severely notched to hourglass samples at an IAT of 685 ⁰C

3D Analysis of 100-200 largest voids on fractured Steel M with a MF 

starting microstructure samples intercritically annealed at 665–710⁰C for 

120s and under different triaxial states of stress at the optimized IAT.  

2D Analysis of fractured Steel M with a MF starting microstructure 

samples intercritically annealed from 665–710⁰C for 120s and under 

different triaxial states of stress at the optimized IAT
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Figure 7 Void Diameters of (a) hourglass samples from IATs of 665–710⁰C 

(b) Severely notched to hourglass samples at an IAT of 685 ⁰C
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➢In different triaxial stress states, the M/F regions shows greater 

deforming
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Figure 9 Traced Austenite regions on µDIC at high local average strains 

(a) Severely Notched (b) Misaligned Notches

(b)

Figure 8 Strain Partitioning of M/F and RA regions under different triaxial states of stress

Conclusions
➢ Steel M with an MF starting microstructure intercritically annealed at 

685°C for 120s showed the optimized damage-inducing condition with 

the least closed voids nucleated at fracture (in 2D) & greatest variability 

in void diameter size (in 3D)

➢ 3D Triaxiality investigations on the optimized IAT of 685°C showed

voids growing to the same variability in diameter

➢ 2D Triaxiality investigations on the optimized IAT of 685°C condition 

showed the M/F regions to be deforming more than the RA regions in 

the microstructure  

Major Future Work

Figure 10 Volumetric Austenite measurements & damage evolution curves as a 

function of strain of 3G Quench & Partition (Q&P) steels5,6 

➢ Post-process recently acquired volumetric austenite measurements  

unnotched and notched specimens to superimpose on damage evolution 

µXCT curves of Medium-Mn steels. Exemplifying the result in 

Figure 10.
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